Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Suction Grasp Region Prediction using Self-supervised Learning for Object Picking in Dense Clutter (1904.07402v2)

Published 16 Apr 2019 in cs.RO, cs.CV, and cs.LG

Abstract: This paper focuses on robotic picking tasks in cluttered scenario. Because of the diversity of poses, types of stack and complicated background in bin picking situation, it is much difficult to recognize and estimate their pose before grasping them. Here, this paper combines Resnet with U-net structure, a special framework of Convolution Neural Networks (CNN), to predict picking region without recognition and pose estimation. And it makes robotic picking system learn picking skills from scratch. At the same time, we train the network end to end with online samples. In the end of this paper, several experiments are conducted to demonstrate the performance of our methods.

Citations (31)

Summary

We haven't generated a summary for this paper yet.