Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bootstrapping Covariance Operators of Functional Time Series (1904.06721v3)

Published 14 Apr 2019 in math.ST and stat.TH

Abstract: For testing hypothesis on the covariance operator of functional time series, we suggest to use the full functional information and to avoid dimension reduction techniques. The limit distribution follows from the central limit theorem of the weak convergence of the partial sum process in general Hilbert space applied to the product space. In order to obtain critical values for tests, we generalize bootstrap results from the independent to the dependent case. This results can be applied to covariance operators, autocovariance operators and cross covariance operators. We discuss one sample and changepoint tests and give some simulation results.

Summary

We haven't generated a summary for this paper yet.