Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of overfitting in the regularized Cox model (1904.06632v2)

Published 14 Apr 2019 in stat.ME, cond-mat.dis-nn, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: The Cox proportional hazards model is ubiquitous in the analysis of time-to-event data. However, when the data dimension p is comparable to the sample size $N$, maximum likelihood estimates for its regression parameters are known to be biased or break down entirely due to overfitting. This prompted the introduction of the so-called regularized Cox model. In this paper we use the replica method from statistical physics to investigate the relationship between the true and inferred regression parameters in regularized multivariate Cox regression with L2 regularization, in the regime where both p and N are large but with p/N ~ O(1). We thereby generalize a recent study from maximum likelihood to maximum a posteriori inference. We also establish a relationship between the optimal regularization parameter and p/N, allowing for straightforward overfitting corrections in time-to-event analysis.

Citations (6)

Summary

We haven't generated a summary for this paper yet.