Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised Anomaly Detection based on Deep Autoregressive Density Estimators (1904.06034v1)

Published 12 Apr 2019 in stat.ML and cs.LG

Abstract: We propose a supervised anomaly detection method based on neural density estimators, where the negative log likelihood is used for the anomaly score. Density estimators have been widely used for unsupervised anomaly detection. By the recent advance of deep learning, the density estimation performance has been greatly improved. However, the neural density estimators cannot exploit anomaly label information, which would be valuable for improving the anomaly detection performance. The proposed method effectively utilizes the anomaly label information by training the neural density estimator so that the likelihood of normal instances is maximized and the likelihood of anomalous instances is lower than that of the normal instances. We employ an autoregressive model for the neural density estimator, which enables us to calculate the likelihood exactly. With the experiments using 16 datasets, we demonstrate that the proposed method improves the anomaly detection performance with a few labeled anomalous instances, and achieves better performance than existing unsupervised and supervised anomaly detection methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tomoharu Iwata (64 papers)
  2. Yuki Yamanaka (7 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.