Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features (1904.05207v1)

Published 10 Apr 2019 in stat.ML and cs.LG

Abstract: Gaussian processes (GPs) provide a powerful framework for extrapolation, interpolation, and noise removal in regression and classification. This paper considers constraining GPs to arbitrarily-shaped domains with boundary conditions. We solve a Fourier-like generalised harmonic feature representation of the GP prior in the domain of interest, which both constrains the GP and attains a low-rank representation that is used for speeding up inference. The method scales as $\mathcal{O}(nm2)$ in prediction and $\mathcal{O}(m3)$ in hyperparameter learning for regression, where $n$ is the number of data points and $m$ the number of features. Furthermore, we make use of the variational approach to allow the method to deal with non-Gaussian likelihoods. The experiments cover both simulated and empirical data in which the boundary conditions allow for inclusion of additional physical information.

Citations (23)

Summary

We haven't generated a summary for this paper yet.