Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

POSEAMM: A Unified Framework for Solving Pose Problems using an Alternating Minimization Method (1904.04858v1)

Published 9 Apr 2019 in cs.CV and cs.RO

Abstract: Pose estimation is one of the most important problems in computer vision. It can be divided in two different categories -- absolute and relative -- and may involve two different types of camera models: central and non-central. State-of-the-art methods have been designed to solve separately these problems. This paper presents a unified framework that is able to solve any pose problem by alternating optimization techniques between two set of parameters, rotation and translation. In order to make this possible, it is necessary to define an objective function that captures the problem at hand. Since the objective function will depend on the rotation and translation it is not possible to solve it as a simple minimization problem. Hence the use of Alternating Minimization methods, in which the function will be alternatively minimized with respect to the rotation and the translation. We show how to use our framework in three distinct pose problems. Our methods are then benchmarked with both synthetic and real data, showing their better balance between computational time and accuracy.

Citations (11)

Summary

We haven't generated a summary for this paper yet.