On a system of difference equations of second order solved in a closed from
Abstract: In this work we solve in closed form the system of difference equations \begin{equation*} x_{n+1}=\dfrac{ay_nx_{n-1}+bx_{n-1}+c}{y_nx_{n-1}},\; y_{n+1}=\dfrac{ax_ny_{n-1}+by_{n-1}+c}{x_ny_{n-1}},\;n=0,1,..., \end{equation*} where the initial values $x_{-1}$, $x_0$, $y_{-1}$ and $y_0$ are arbitrary nonzero real numbers and the parameters $a$, $b$ and $c$ are arbitrary real numbers with $c\ne 0$. In particular we represent the solutions of some particular cases of this system in terms of Tribonacci and Padovan numbers and we prove the global stability of the corresponding positive equilibrium points. The result obtained here extend those obtained in some papers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.