Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generalization Bound for Online Variational Inference (1904.03920v2)

Published 8 Apr 2019 in stat.ML, cs.LG, math.ST, stat.CO, and stat.TH

Abstract: Bayesian inference provides an attractive online-learning framework to analyze sequential data, and offers generalization guarantees which hold even with model mismatch and adversaries. Unfortunately, exact Bayesian inference is rarely feasible in practice and approximation methods are usually employed, but do such methods preserve the generalization properties of Bayesian inference ? In this paper, we show that this is indeed the case for some variational inference (VI) algorithms. We consider a few existing online, tempered VI algorithms, as well as a new algorithm, and derive their generalization bounds. Our theoretical result relies on the convexity of the variational objective, but we argue that the result should hold more generally and present empirical evidence in support of this. Our work in this paper presents theoretical justifications in favor of online algorithms relying on approximate Bayesian methods.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com