Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Unbiased variance reduction in randomized experiments (1904.03817v1)

Published 8 Apr 2019 in math.ST and stat.TH

Abstract: This paper develops a flexible method for decreasing the variance of estimators for complex experiment effect metrics (e.g. ratio metrics) while retaining asymptotic unbiasedness. This method uses the auxiliary information about the experiment units to decrease the variance. The method can incorporate almost any arbitrary predictive model (e.g. linear regression, regularization, neural networks) to adjust the estimators. The adjustment involves some free parameters which can be optimized to achieve the smallest variance reduction given the predictive model performance. Also we approximate the achievable reduction in variance in fairly general settings mathematically. Finally, we use simulations to show the method works.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube