Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A p-adic analogue of Siegel's Theorem on sums of squares (1904.03466v1)

Published 6 Apr 2019 in math.NT

Abstract: Siegel proved that every totally positive element of a number field K is the sum of four squares, so in particular the Pythagoras number is uniformly bounded across number fields. The p-adic Kochen operator provides a p-adic analogue of squaring, and a certain localisation of the ring generated by this operator consists of precisely the totally p-integral elements of K. We use this to formulate and prove a p-adic analogue of Siegel's theorem, by introducing the p-Pythagoras number of a general field, and showing that this number is uniformly bounded across number fields. We also generally study fields with finite p-Pythagoras number and show that the growth of the p-Pythagoras number in finite extensions is bounded.

Summary

We haven't generated a summary for this paper yet.