Papers
Topics
Authors
Recent
Search
2000 character limit reached

Linear-Quadratic Mean Field Social Optimization with a Major Player

Published 6 Apr 2019 in math.OC | (1904.03346v1)

Abstract: This paper considers a linear-quadratic (LQ) mean field control problem involving a major player and a large number of minor players, where the dynamics and costs depend on random parameters. The objective is to optimize a social cost as a weighted sum of the individual costs under decentralized information. We apply the person-by-person optimality principle in team decision theory to the finite population model to construct two limiting variational problems whose solutions, subject to the requirement of consistent mean field approximations, yield a system of forward-backward stochastic differential equations (FBSDEs). We show the existence and uniqueness of a solution to the FBSDEs and obtain decentralized strategies nearly achieving social optimality in the original large but finite population model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.