Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring scheduling efficiency of RNNs for NLP applications (1904.03302v1)

Published 5 Apr 2019 in cs.DC

Abstract: Recurrent neural networks (RNNs) have shown state of the art results for speech recognition, natural language processing, image captioning and video summarizing applications. Many of these applications run on low-power platforms, so their energy efficiency is extremely important. We observed that cache-oblivious RNN scheduling during inference typically results in 30-50x more data transferred on and off the CPU than the application's working set size. This can potentially impact its energy efficiency. This paper presents a new metric called Data Reuse Efficiency to gauge the RNN scheduling efficiency of a platform and shows the factors that influence the DRE value. Additionally, this paper discusses an optimization to improve reuse in RNNs and highlights the positive impact of this optimization on the total amount of memory read from or written to the memory controller (and, hence, the DRE value) during the execution of an RNN application for a mobile SoC.

Citations (12)

Summary

We haven't generated a summary for this paper yet.