Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Dialogue State Tracking by Discerning the Relevant Context (1904.02800v1)

Published 4 Apr 2019 in cs.CL

Abstract: A typical conversation comprises of multiple turns between participants where they go back-and-forth between different topics. At each user turn, dialogue state tracking (DST) aims to estimate user's goal by processing the current utterance. However, in many turns, users implicitly refer to the previous goal, necessitating the use of relevant dialogue history. Nonetheless, distinguishing relevant history is challenging and a popular method of using dialogue recency for that is inefficient. We, therefore, propose a novel framework for DST that identifies relevant historical context by referring to the past utterances where a particular slot-value changes and uses that together with weighted system utterance to identify the relevant context. Specifically, we use the current user utterance and the most recent system utterance to determine the relevance of a system utterance. Empirical analyses show that our method improves joint goal accuracy by 2.75% and 2.36% on WoZ 2.0 and MultiWoZ 2.0 restaurant domain datasets respectively over the previous state-of-the-art GLAD model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sanuj Sharma (1 paper)
  2. Prafulla Kumar Choubey (21 papers)
  3. Ruihong Huang (41 papers)
Citations (11)