Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Bilinear Pooling for Fine-Grained Recognition (1904.01893v4)

Published 3 Apr 2019 in cs.CV

Abstract: Naturally, fine-grained recognition, e.g., vehicle identification or bird classification, has specific hierarchical labels, where fine categories are always harder to be classified than coarse categories. However, most of the recent deep learning based methods neglect the semantic structure of fine-grained objects and do not take advantage of the traditional fine-grained recognition techniques (e.g. coarse-to-fine classification). In this paper, we propose a novel framework with a two-branch network (coarse branch and fine branch), i.e., semantic bilinear pooling, for fine-grained recognition with a hierarchical label tree. This framework can adaptively learn the semantic information from the hierarchical levels. Specifically, we design a generalized cross-entropy loss for the training of the proposed framework to fully exploit the semantic priors via considering the relevance between adjacent levels and enlarge the distance between samples of different coarse classes. Furthermore, our method leverages only the fine branch when testing so that it adds no overhead to the testing time. Experimental results show that our proposed method achieves state-of-the-art performance on four public datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xinjie Li (12 papers)
  2. Chun Yang (45 papers)
  3. Songlu Chen (1 paper)
  4. Chao Zhu (51 papers)
  5. Xu-Cheng Yin (35 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.