Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning in steganography and steganalysis from 2015 to 2018 (1904.01444v2)

Published 31 Mar 2019 in cs.CR

Abstract: For almost 10 years, the detection of a hidden message in an image has been mainly carried out by the computation of Rich Models (RM), followed by classification using an Ensemble Classifier (EC). In 2015, the first study using a convolutional neural network (CNN) obtained the first results of steganalysis by Deep Learning approaching the performances of the two-step approach (EC + RM). Between 2015-2018, numerous publications have shown that it is possible to obtain improved performances, notably in spatial steganalysis, JPEG steganalysis, Selection-Channel-Aware steganalysis, and in quantitative steganalysis. This chapter deals with deep learning in steganalysis from the point of view of current methods, by presenting different neural networks from the period 2015-2018, that have been evaluated with a methodology specific to the discipline of steganalysis. The chapter is not intended to repeat the basic concepts of machine learning or deep learning. So, we will present the structure of a deep neural network, in a generic way and present the networks proposed in existing literature for the different scenarios of steganalysis, and finally, we will discuss steganography by deep learning.

Citations (47)

Summary

We haven't generated a summary for this paper yet.