Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 45 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Quantitative phase microscopy spatial signatures of cancer cells (1904.00997v1)

Published 2 Apr 2019 in q-bio.QM, physics.bio-ph, and q-bio.TO

Abstract: We present cytometric classification of live healthy and cancer cells by using the spatial morphological and textural information found in the label-free quantitative phase images of the cells. We compare both healthy cells to primary tumor cell and primary tumor cells to metastatic cancer cells, where tumor biopsies and normal tissues were isolated from the same individuals. To mimic analysis of liquid biopsies by flow cytometry, the cells were imaged while unattached to the substrate. We used low-coherence off-axis interferometric phase microscopy setup, which allows a single-exposure acquisition mode, and thus is suitable for quantitative imaging of dynamic cells during flow. After acquisition, the optical path delay maps of the cells were extracted, and used to calculate 15 parameters derived from cellular 3-D morphology and texture. Upon analyzing tens of cells in each group, we found high statistical significance in the difference between the groups in most of the parameters calculated, with the same trends for all statistically significant parameters. Furthermore, a specially designed machine learning algorithm, implemented on the phase map extracted features, classified the correct cell type (healthy/cancer/metastatic) with 81%-93% sensitivity and 81%-99% specificity. The quantitative phase imaging approach for liquid biopsies presented in this paper could be the basis for advanced techniques of staging freshly isolated live cancer cells in imaging flow cytometers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube