Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-phase flow regime prediction using LSTM based deep recurrent neural network (1904.00291v1)

Published 30 Mar 2019 in cs.CV, physics.app-ph, physics.data-an, and physics.flu-dyn

Abstract: Long short-term memory (LSTM) and recurrent neural network (RNN) has achieved great successes on time-series prediction. In this paper, a methodology of using LSTM-based deep-RNN for two-phase flow regime prediction is proposed, motivated by previous research on constructing deep RNN. The method is featured with fast response and accuracy. The built RNN networks are trained and tested with time-series void fraction data collected using impedance void meter. The result shows that the prediction accuracy depends on the depth of network and the number of layer cells. However, deeper and larger network consumes more time in predicting.

Citations (6)

Summary

We haven't generated a summary for this paper yet.