Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications (1904.00176v1)

Published 30 Mar 2019 in stat.ML, cs.LG, and stat.CO

Abstract: Density Estimation is one of the central areas of statistics whose purpose is to estimate the probability density function underlying the observed data. It serves as a building block for many tasks in statistical inference, visualization, and machine learning. Density Estimation is widely adopted in the domain of unsupervised learning especially for the application of clustering. As big data become pervasive in almost every area of data sciences, analyzing high-dimensional data that have many features and variables appears to be a major focus in both academia and industry. High-dimensional data pose challenges not only from the theoretical aspects of statistical inference, but also from the algorithmic/computational considerations of machine learning and data analytics. This paper reviews a collection of selected nonparametric density estimation algorithms for high-dimensional data, some of them are recently published and provide interesting mathematical insights. The important application domain of nonparametric density estimation, such as { modal clustering}, are also included in this paper. Several research directions related to density estimation and high-dimensional data analysis are suggested by the authors.

Citations (67)

Summary

We haven't generated a summary for this paper yet.