Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Multi-target regression trees with stacked leaf models (1903.12483v4)

Published 29 Mar 2019 in cs.LG and stat.ML

Abstract: One of the current challenges in machine learning is how to deal with data coming at increasing rates in data streams. New predictive learning strategies are needed to cope with the high throughput data and concept drift. One of the data stream mining tasks where new learning strategies are needed is multi-target regression, due to its applicability in a high number of real world problems. While reliable and effective learning strategies have been proposed for batch multi-target regression, few have been proposed for multi-target online learning in data streams. Besides, most of the existing solutions do not consider the occurrence of inter-target correlations when making predictions. In this work, we propose a novel online learning strategy for multi-target regression in data streams. The proposed strategy extends existing online decision tree learning algorithm to explore inter-target dependencies while making predictions. For such, the proposed strategy, called Stacked Single-target Hoeffding Tree (SST-HT), uses the inter-target dependencies as an additional information source to enhance predictive accuracy. Throughout an extensive experimental setup, we evaluate our proposal against state-of-the-art decision tree-based algorithms for online multi-target regression. According to the experimental results, SST-HT presents superior predictive accuracy, with a small increase in the processing time and memory requirements.

Citations (3)

Summary

We haven't generated a summary for this paper yet.