Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Variance Reduction with Mixtures (1903.12416v1)

Published 29 Mar 2019 in cs.LG and stat.ML

Abstract: Adaptive importance sampling for stochastic optimization is a promising approach that offers improved convergence through variance reduction. In this work, we propose a new framework for variance reduction that enables the use of mixtures over predefined sampling distributions, which can naturally encode prior knowledge about the data. While these sampling distributions are fixed, the mixture weights are adapted during the optimization process. We propose VRM, a novel and efficient adaptive scheme that asymptotically recovers the best mixture weights in hindsight and can also accommodate sampling distributions over sets of points. We empirically demonstrate the versatility of VRM in a range of applications.

Citations (13)

Summary

We haven't generated a summary for this paper yet.