Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative homogenization in a balanced random environment (1903.12151v2)

Published 28 Mar 2019 in math.PR and math.AP

Abstract: We consider discrete non-divergence form difference operators in a random environment and the corresponding process--the random walk in a balanced random environment in $\mathbb{Z}d$ with a finite range of dependence. We first quantify the ergodicity of the environment from the point of view of the particle. As a consequence, we quantify the quenched central limit theorem of the random walk with an algebraic rate. Furthermore, we prove an algebraic rate of convergence for the homogenization of the Dirichlet problems for both elliptic and parabolic non-divergence form difference operators.

Summary

We haven't generated a summary for this paper yet.