Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Handling Noisy Labels for Robustly Learning from Self-Training Data for Low-Resource Sequence Labeling (1903.12008v1)

Published 28 Mar 2019 in cs.CL and cs.LG

Abstract: In this paper, we address the problem of effectively self-training neural networks in a low-resource setting. Self-training is frequently used to automatically increase the amount of training data. However, in a low-resource scenario, it is less effective due to unreliable annotations created using self-labeling of unlabeled data. We propose to combine self-training with noise handling on the self-labeled data. Directly estimating noise on the combined clean training set and self-labeled data can lead to corruption of the clean data and hence, performs worse. Thus, we propose the Clean and Noisy Label Neural Network which trains on clean and noisy self-labeled data simultaneously by explicitly modelling clean and noisy labels separately. In our experiments on Chunking and NER, this approach performs more robustly than the baselines. Complementary to this explicit approach, noise can also be handled implicitly with the help of an auxiliary learning task. To such a complementary approach, our method is more beneficial than other baseline methods and together provides the best performance overall.

Citations (17)

Summary

We haven't generated a summary for this paper yet.