Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Laplace Landmark Localization (1903.11633v2)

Published 27 Mar 2019 in cs.CV

Abstract: Landmark localization in images and videos is a classic problem solved in various ways. Nowadays, with deep networks prevailing throughout machine learning, there are revamped interests in pushing facial landmark detection technologies to handle more challenging data. Most efforts use network objectives based on L1 or L2 norms, which have several disadvantages. First of all, the locations of landmarks are determined from generated heatmaps (i.e., confidence maps) from which predicted landmark locations (i.e., the means) get penalized without accounting for the spread: a high scatter corresponds to low confidence and vice-versa. For this, we introduce a LaplaceKL objective that penalizes for a low confidence. Another issue is a dependency on labeled data, which are expensive to obtain and susceptible to error. To address both issues we propose an adversarial training framework that leverages unlabeled data to improve model performance. Our method claims state-of-the-art on all of the 300W benchmarks and ranks second-to-best on the Annotated Facial Landmarks in the Wild (AFLW) dataset. Furthermore, our model is robust with a reduced size: 1/8 the number of channels (i.e., 0.0398MB) is comparable to state-of-that-art in real-time on CPU. Thus, we show that our method is of high practical value to real-life application.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com