Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chance-Constrained AC Optimal Power Flow -- A Polynomial Chaos Approach (1903.11337v2)

Published 27 Mar 2019 in cs.SY

Abstract: As the share of renewables in the grid increases, the operation of power systems becomes more challenging. The present paper proposes a method to formulate and solve chance-constrained optimal power flow while explicitly considering the full nonlinear AC power flow equations and stochastic uncertainties. We use polynomial chaos expansion to model the effects of arbitrary uncertainties of finite variance, which enables to predict and optimize the system state for a range of operating conditions. We apply chance constraints to limit the probability of violations of inequality constraints. Our method incorporates a more detailed and a more flexible description of both the controllable variables and the resulting system state than previous methods. Two case studies highlight the efficacy of the method, with a focus on satisfaction of the AC power flow equations and on the accurate computation of moments of all random variables.

Citations (58)

Summary

We haven't generated a summary for this paper yet.