Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pure semisimple $n$-cluster tilting subcategories (1903.11307v2)

Published 27 Mar 2019 in math.RT and math.RA

Abstract: From the viewpoint of higher homological algebra, we introduce pure semisimple $n$-abelian category, which is analogs of pure semisimple abelian category. Let $\Lambda$ be an Artin algebra and $\mathcal{M}$ be an $n$-cluster tilting subcategory of $Mod$-$\Lambda$. We show that $\mathcal{M}$ is pure semisimple if and only if each module in $\mathcal{M}$ is a direct sum of finitely generated modules. Let $\mathfrak{m}$ be an $n$-cluster tilting subcategory of $mod$-$\Lambda$. We show that $Add(\mathfrak{m})$ is an $n$-cluster tilting subcategory of $Mod$-$\Lambda$ if and only if $\mathfrak{m}$ has an additive generator if and only if $Mod(\mathfrak{m})$ is locally finite. This generalizes Auslander's classical results on pure semisimplicity of Artin algebras.

Summary

We haven't generated a summary for this paper yet.