Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variance Reduction Applied to Machine Learning for Pricing Bermudan/American Options in High Dimension (1903.11275v2)

Published 27 Mar 2019 in q-fin.CP

Abstract: In this paper we propose an efficient method to compute the price of multi-asset American options, based on Machine Learning, Monte Carlo simulations and variance reduction technique. Specifically, the options we consider are written on a basket of assets, each of them following a Black-Scholes dynamics. In the wake of Ludkovski's approach (2018), we implement here a backward dynamic programming algorithm which considers a finite number of uniformly distributed exercise dates. On these dates, the option value is computed as the maximum between the exercise value and the continuation value, which is obtained by means of Gaussian process regression technique and Monte Carlo simulations. Such a method performs well for low dimension baskets but it is not accurate for very high dimension baskets. In order to improve the dimension range, we employ the European option price as a control variate, which allows us to treat very large baskets and moreover to reduce the variance of price estimators. Numerical tests show that the proposed algorithm is fast and reliable, and it can handle also American options on very large baskets of assets, overcoming the problem of the curse of dimensionality.

Summary

We haven't generated a summary for this paper yet.