Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Theory of Dynamic Graph Regression Problem (1903.10699v5)

Published 26 Mar 2019 in cs.LG and stat.ML

Abstract: Most of real-world graphs are dynamic, i.e., they change over time by a sequence of update operations. While the regression problem has been studied for static graphs and temporal graphs, it is not investigated for general dynamic graphs. In this paper, we study regression over dynamic graphs. First, we present the notion of update-efficient matrix embedding, that defines conditions sufficient for a matrix embedding to be effectively used for dynamic graph regression (under l2 norm). Then, we show that given a n*m update-efficient matrix embedding (e.g., the adjacency matrix) and after an update operation in the graph, the exact optimal solution of linear regression can be updated in O(nm) time for the revised graph. Moreover, we show that this also holds when the matrix embedding is the Laplacian matrix and the update operations are restricted to edge insertion/deletion. In the end, by conducting experiments over synthetic and real-world graphs, we show the high efficiency of updating the solution of graph regression.

Citations (3)

Summary

We haven't generated a summary for this paper yet.