Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expanding the Text Classification Toolbox with Cross-Lingual Embeddings (1903.09878v2)

Published 23 Mar 2019 in cs.CL

Abstract: Most work in text classification and NLP focuses on English or a handful of other languages that have text corpora of hundreds of millions of words. This is creating a new version of the digital divide: the AI divide. Transfer-based approaches, such as Cross-Lingual Text Classification (CLTC) - the task of categorizing texts written in different languages into a common taxonomy, are a promising solution to the emerging AI divide. Recent work on CLTC has focused on demonstrating the benefits of using bilingual word embeddings as features, relegating the CLTC problem to a mere benchmark based on a simple averaged perceptron. In this paper, we explore more extensively and systematically two flavors of the CLTC problem: news topic classification and textual churn intent detection (TCID) in social media. In particular, we test the hypothesis that embeddings with context are more effective, by multi-tasking the learning of multilingual word embeddings and text classification; we explore neural architectures for CLTC; and we move from bi- to multi-lingual word embeddings. For all architectures, types of word embeddings and datasets, we notice a consistent gain trend in favor of multilingual joint training, especially for low-resourced languages.

Citations (1)

Summary

We haven't generated a summary for this paper yet.