Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Parametric Uncertainty Bounds for Binary Classification (1903.09790v1)

Published 23 Mar 2019 in stat.ML and cs.LG

Abstract: The paper studies binary classification and aims at estimating the underlying regression function which is the conditional expectation of the class labels given the inputs. The regression function is the key component of the Bayes optimal classifier, moreover, besides providing optimal predictions, it can also assess the risk of misclassification. We aim at building non-asymptotic confidence regions for the regression function and suggest three kernel-based semi-parametric resampling methods. We prove that all of them guarantee regions with exact coverage probabilities and they are strongly consistent.

Citations (6)

Summary

We haven't generated a summary for this paper yet.