Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instance and Output Optimal Parallel Algorithms for Acyclic Joins (1903.09717v2)

Published 22 Mar 2019 in cs.DB

Abstract: Massively parallel join algorithms have received much attention in recent years, while most prior work has focused on worst-optimal algorithms. However, the worst-case optimality of these join algorithms relies on hard instances having very large output sizes, which rarely appear in practice. A stronger notion of optimality is {\em output-optimal}, which requires an algorithm to be optimal within the class of all instances sharing the same input and output size. An even stronger optimality is {\em instance-optimal}, i.e., the algorithm is optimal on every single instance, but this may not always be achievable. In the traditional RAM model of computation, the classical Yannakakis algorithm is instance-optimal on any acyclic join. But in the massively parallel computation (MPC) model, the situation becomes much more complicated. We first show that for the class of r-hierarchical joins, instance-optimality can still be achieved in the MPC model. Then, we give a new MPC algorithm for an arbitrary acyclic join with load $O ({\IN \over p} + {\sqrt{\IN \cdot \OUT} \over p})$, where $\IN,\OUT$ are the input and output sizes of the join, and $p$ is the number of servers in the MPC model. This improves the MPC version of the Yannakakis algorithm by an $O (\sqrt{\OUT \over \IN} )$ factor. Furthermore, we show that this is output-optimal when $\OUT = O(p \cdot \IN)$, for every acyclic but non-r-hierarchical join. Finally, we give the first output-sensitive lower bound for the triangle join in the MPC model, showing that it is inherently more difficult than acyclic joins.

Citations (17)

Summary

We haven't generated a summary for this paper yet.