Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Adaptive Sampling with almost no Synchronization (1903.09422v1)

Published 22 Mar 2019 in cs.DC

Abstract: Approximation via sampling is a widespread technique whenever exact solutions are too expensive. In this paper, we present techniques for an efficient parallelization of adaptive (a. k. a. progressive) sampling algorithms on multi-threaded shared-memory machines. Our basic algorithmic technique requires no synchronization except for atomic load-acquire and store-release operations. It does, however, require O(n) memory per thread, where n is the size of the sampling state. We present variants of the algorithm that either reduce this memory consumption to O(1) or ensure that deterministic results are obtained. Using the KADABRA algorithm for betweenness centrality (a popular measure in network analysis) approximation as a case study, we demonstrate the empirical performance of our techniques. In particular, on a 32-core machine, our best algorithm is 2.9x faster than what we could achieve using a straightforward OpenMP-based parallelization and 65.3x faster than the existing implementation of KADABRA.

Citations (6)

Summary

We haven't generated a summary for this paper yet.