Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Private Nonparametric Hypothesis Testing (1903.09364v1)

Published 22 Mar 2019 in stat.ME and cs.CR

Abstract: Hypothesis tests are a crucial statistical tool for data mining and are the workhorse of scientific research in many fields. Here we study differentially private tests of independence between a categorical and a continuous variable. We take as our starting point traditional nonparametric tests, which require no distributional assumption (e.g., normality) about the data distribution. We present private analogues of the Kruskal-Wallis, Mann-Whitney, and Wilcoxon signed-rank tests, as well as the parametric one-sample t-test. These tests use novel test statistics developed specifically for the private setting. We compare our tests to prior work, both on parametric and nonparametric tests. We find that in all cases our new nonparametric tests achieve large improvements in statistical power, even when the assumptions of parametric tests are met.

Citations (43)

Summary

We haven't generated a summary for this paper yet.