Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scanning Probe State Recognition With Multi-Class Neural Network Ensembles (1903.09101v1)

Published 21 Mar 2019 in cs.LG, cond-mat.mes-hall, physics.comp-ph, and physics.data-an

Abstract: One of the largest obstacles facing scanning probe microscopy is the constant need to correct flaws in the scanning probe in situ. This is currently a manual, time-consuming process that would benefit greatly from automation. Here we introduce a convolutional neural network protocol that enables automated recognition of a variety of desirable and undesirable scanning probe tip states on both metal and non-metal surfaces. By combining the best performing models into majority voting ensembles, we find that the desirable states of H:Si(100) can be distinguished with a mean precision of 0.89 and an average receiver-operator-characteristic curve area of 0.95. More generally, high and low-quality tips can be distinguished with a mean precision of 0.96 and near perfect area-under-curve of 0.98. With trivial modifications, we also successfully automatically identify undesirable, non-surface-specific states on surfaces of Au(111) and Cu(111). In these cases we find mean precisions of 0.95 and 0.75 and area-under-curves of 0.98 and 0.94, respectively.

Citations (25)

Summary

We haven't generated a summary for this paper yet.