Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling Graph Errors: Towards Robust Graph Signal Processing (1903.08398v2)

Published 20 Mar 2019 in cs.IT and math.IT

Abstract: The first step for any graph signal processing (GSP) procedure is to learn the graph signal representation, i.e., to capture the dependence structure of the data into an adjacency matrix. Indeed, the adjacency matrix is typically not known a priori and has to be learned. However, it is learned with errors. A little attention has been paid to modelling such errors in the adjacency matrix, and studying their effects on GSP methods. However, modelling errors in the adjacency matrix will enable both to study the graph error effects in GSP and to develop robust GSP algorithms. In this paper, we therefore introduce practically justifiable graph error models. We also study, both analytically when possible and numerically, the graph error effect on the performance of GSP methods in different types of problems such as filtering of graph signals and independent component analysis of graph signals (graph decorrelation).

Citations (6)

Summary

We haven't generated a summary for this paper yet.