Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Learning Framework for Distribution-Based Game-Theoretic Solution Concepts (1903.08322v2)

Published 20 Mar 2019 in cs.AI and cs.GT

Abstract: The past few years have seen several works on learning economic solutions from data; these include optimal auction design, function optimization, stable payoffs in cooperative games and more. In this work, we provide a unified learning-theoretic methodology for modeling such problems, and establish tools for determining whether a given economic solution concept can be learned from data. Our learning theoretic framework generalizes a notion of function space dimension -- the graph dimension -- adapting it to the solution concept learning domain. We identify sufficient conditions for the PAC learnability of solution concepts, and show that results in existing works can be immediately derived using our methodology. Finally, we apply our methods in other economic domains, yielding a novel notion of PAC competitive equilibrium and PAC Condorcet winners.

Citations (13)

Summary

We haven't generated a summary for this paper yet.