Almost dominant generalized slices and convolution diagrams over them (1903.08277v5)
Abstract: Let $G$ be a connected reductive complex algebraic group with a maximal torus $T$. We denote by $\Lambda$ the cocharacter lattice of $(T,G)$. Let $\Lambda+ \subset \Lambda$ be the submonoid of dominant coweights. For $\lambda \in \Lambda+,\,\mu \in \Lambda,\,\mu \leqslant \lambda$, in arXiv:1604.03625, authors defined a generalized transversal slice $\overline{\mathcal{W}}\lambda_\mu$. This is an algebraic variety of the dimension $\langle 2\rho{\vee}, \lambda-\mu \rangle$, where $2\rho{\vee}$ is the sum of positive roots of $G$. In this paper, we construct an isomorphism $\overline{\mathcal{W}}\lambda_\mu \simeq \overline{\mathcal{W}}\lambda_{\mu+} \times {\mathbb{A}}{\langle 2\rho{\vee},\, \mu+-\mu\rangle}$ for $\mu \in \Lambda$ such that $\langle \alpha{\vee},\mu\rangle \geqslant -1$ for any positive root $\alpha{\vee}$, here $\mu+ \in W\mu$ is the dominant representative in the Weyl group orbit of $\mu$. We consider the example when $\lambda$ is minuscule, $\mu \in W\lambda$ and describe natural coordinates, Poisson structure on $\overline{\mathcal{W}}\lambda_\mu \simeq {\mathbb{A}}{\langle 2\rho\vee,\,\lambda-\mu \rangle}$ and its $T\times {\mathbb{C}}\times$-character. We apply these results to compute $T \times {\mathbb{C}}\times$-characters of tangent spaces at fixed points of convolution diagrams $\widetilde{\mathcal{W}}{\underline{\lambda}}_\mu$ with minuscule $\lambda_i$. We also apply our results to construct open coverings by affine spaces of convolution diagrams $\widetilde{\mathcal{W}}{\underline{\lambda}}_\mu$ over slices with $\mu$ such that $\langle \alpha{\vee},\mu\rangle \geqslant -1$ for any positive root $\alpha{\vee}$ and minuscule $\lambda_i$ and to compute Poincar\'e polynomials of such convolution diagrams $\widetilde{\mathcal{W}}{\underline{\lambda}}_{\mu}$.