Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recovery of non-smooth coefficients appearing in anisotropic wave equations (1903.08118v1)

Published 19 Mar 2019 in math.AP

Abstract: We study the problem of unique recovery of a non-smooth one-form $\mathcal A$ and a scalar function $q$ from the Dirichlet to Neumann map, $\Lambda_{\mathcal A,q}$, of a hyperbolic equation on a Riemannian manifold $(M,g)$. We prove uniqueness of the one-form $\mathcal A$ up to the natural gauge, under weak regularity conditions on $\mathcal A,q$ and under the assumption that $(M,g)$ is simple. Under an additional regularity assumption, we also derive uniqueness of the scalar function $q$. The proof is based on the geometric optic construction and inversion of the light ray transform extended as a Fourier Integral Operator to non-smooth parameters and functions.

Summary

We haven't generated a summary for this paper yet.