Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A-Foliations of codimension two on compact simply-connected manifolds (1903.07191v3)

Published 17 Mar 2019 in math.DG

Abstract: We show that a singular Riemannian foliation of codimension two on a compact simply-connected Riemannian $(n+2)$-manifold, with regular leaves homeomorphic to the $n$-torus, is given by a smooth effective $n$-torus action. This solves in the negative for the codimension $2$ case a question about the existence of foliations by exotic tori on simply-connected manifolds.

Summary

We haven't generated a summary for this paper yet.