Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: beyond the affine case (1903.06520v2)

Published 15 Mar 2019 in math.NA and cs.NA

Abstract: We consider a linear elliptic partial differential equation (PDE) with a generic uniformly bounded parametric coefficient. The solution to this PDE problem is approximated in the framework of stochastic Galerkin finite element methods. We perform a posteriori error analysis of Galerkin approximations and derive a reliable and efficient estimate for the energy error in these approximations. Practical versions of this error estimate are discussed and tested numerically for a model problem with non-affine parametric representation of the coefficient. Furthermore, we use the error reduction indicators derived from spatial and parametric error estimators to guide an adaptive solution algorithm for the given parametric PDE problem. The performance of the adaptive algorithm is tested numerically for model problems with two different non-affine parametric representations of the coefficient.

Citations (9)

Summary

We haven't generated a summary for this paper yet.