Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A domain mapping approach for elliptic equations posed on random bulk and surface domains (1903.06450v1)

Published 15 Mar 2019 in math.NA

Abstract: In this article, we analyse the domain mapping method approach to approximate statistical moments of solutions to linear elliptic partial differential equations posed over random geometries including smooth surfaces and bulk-surface systems. In particular, we present the necessary geometric analysis required by the domain mapping method to reformulate elliptic equations on random surfaces onto a fix deterministic surface using a prescribed stochastic parametrisation of the random domain. An abstract analysis of a finite element discretisation coupled with a Monte-Carlo sampling is presented for the resulting elliptic equations with random coefficients posed over the fixed curved reference domain and optimal error estimates are derived. The results from the abstract framework are applied to a model elliptic problem on a random surface and a coupled elliptic bulk-surface system and the theoretical convergence rates are confirmed by numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.