Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Nijenhuis geometry II: Left-symmetric algebras and linearization problem for Nijenhuis operators (1903.06411v3)

Published 15 Mar 2019 in math.DG

Abstract: A field of endomorphisms $R$ is called a Nijenhuis operator if its Nijenhuis torsion vanishes. In this work we study a specific kind of singular points of $R$ called points of scalar type. We show that the tangent space at such points possesses a natural structure of a left-symmetric algebra (also known as pre-Lie or Vinberg-Kozul algebras). Following Weinstein's approach to linearization of Poisson structures, we state the linearisation problem for Nijenhuis operators and give an answer in terms of non-degenerate left-symmetric algebras. In particular, in dimension 2, we give classification of non-degenerate left-symmetric algebras for the smooth category and, with some small gaps, for the analytic one. These two cases, analytic and smooth, differ. We also obtain a complete classification of two-dimensional real left-symmetric algebras, which may be an interesting result on its own. This work is the second part of a series of papers on Nijenhuis Geometry started with arXiv:1903.04603

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)