Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities (1903.06066v1)

Published 14 Mar 2019 in math.NA and math.PR

Abstract: The explicit Euler scheme and similar explicit approximation schemes (such as the Milstein scheme) are known to diverge strongly and numerically weakly in the case of one-dimensional stochastic ordinary differential equations with superlinearly growing nonlinearities. It remained an open question whether such a divergence phenomenon also holds in the case of stochastic partial differential equations with superlinearly growing nonlinearities such as stochastic Allen-Cahn equations. In this work we solve this problem by proving that full-discrete exponential Euler and full-discrete linear-implicit Euler approximations diverge strongly and numerically weakly in the case of stochastic Allen-Cahn equations. This article also contains a short literature overview on existing numerical approximation results for stochastic differential equations with superlinearly growing nonlinearities.

Summary

We haven't generated a summary for this paper yet.