Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concentration inequalities for polynomials in $α$-sub-exponential random variables (1903.05964v1)

Published 14 Mar 2019 in math.PR

Abstract: In this work we derive multi-level concentration inequalities for polynomial functions in independent random variables with a $\alpha$-sub-exponential tail decay. A particularly interesting case is given by quadratic forms $f(X_1, \ldots, X_n) = \langle X,A X \rangle$, for which we prove Hanson-Wright-type inequalities with explicit dependence on various norms of the matrix $A$. A consequence of these inequalities is a two-level concentration inequality for quadratic forms in $\alpha$-sub-exponential random variables, such as quadratic Poisson chaos. We provide various applications of these inequalities. Among these are generalizations the results given by Rudelson-Vershynin from sub-Gaussian to $\alpha$-sub-exponential random variables, i. e. concentration of the Euclidean norm of the linear image of a random vector, small ball probability estimates and concentration inequalities for the distance between a random vector and a fixed subspace. Moreover, we obtain concentration inequalities for the excess loss in a fixed design linear regression and the norm of a randomly projected random vector.

Summary

We haven't generated a summary for this paper yet.