Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-armed Bandit MCMC, with applications in sampling from doubly intractable posterior (1903.05726v2)

Published 13 Mar 2019 in stat.CO, cs.AI, physics.data-an, stat.ME, and stat.ML

Abstract: Markov chain Monte Carlo (MCMC) algorithms are widely used to sample from complicated distributions, especially to sample from the posterior distribution in Bayesian inference. However, MCMC is not directly applicable when facing the doubly intractable problem. In this paper, we discussed and compared two existing solutions -- Pseudo-marginal Monte Carlo and Exchange Algorithm. This paper also proposes a novel algorithm: Multi-armed Bandit MCMC (MABMC), which chooses between two (or more) randomized acceptance ratios in each step. MABMC could be applied directly to incorporate Pseudo-marginal Monte Carlo and Exchange algorithm, with higher average acceptance probability.

Summary

We haven't generated a summary for this paper yet.