Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Big Data Goes Small: Real-Time Spectrum-Driven Embedded Wireless Networking Through Deep Learning in the RF Loop (1903.05460v1)

Published 12 Mar 2019 in cs.NI, cs.LG, and eess.SP

Abstract: The explosion of 5G networks and the Internet of Things will result in an exceptionally crowded RF environment, where techniques such as spectrum sharing and dynamic spectrum access will become essential components of the wireless communication process. In this vision, wireless devices must be able to (i) learn to autonomously extract knowledge from the spectrum on-the-fly; and (ii) react in real time to the inferred spectrum knowledge by appropriately changing communication parameters, including frequency band, symbol modulation, coding rate, among others. Traditional CPU-based machine learning suffers from high latency, and requires application-specific and computationally-intensive feature extraction/selection algorithms. In this paper, we present RFLearn, the first system enabling spectrum knowledge extraction from unprocessed I/Q samples by deep learning directly in the RF loop. RFLearn provides (i) a complete hardware/software architecture where the CPU, radio transceiver and learning/actuation circuits are tightly connected for maximum performance; and (ii) a learning circuit design framework where the latency vs. hardware resource consumption trade-off can explored. We implement and evaluate the performance of RFLearn on custom software-defined radio built on a system-on-chip (SoC) ZYNQ-7000 device mounting AD9361 radio transceivers and VERT2450 antennas. We showcase the capabilities of RFLearn by applying it to solving the fundamental problems of modulation and OFDM parameter recognition. Experimental results reveal that RFLearn decreases latency and power by about 17x and 15x with respect to a software-based solution, with a comparatively low hardware resource consumption.

Citations (42)

Summary

We haven't generated a summary for this paper yet.