Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Learning Based Resource Allocation Scheme in Vehicular Communication Systems (1903.04918v1)

Published 10 Mar 2019 in eess.SP and cs.NI

Abstract: In vehicular communications, intracell interference and the stringent latency requirement are challenging issues. In this paper, a joint spectrum reuse and power allocation problem is formulated for hybrid vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Recognizing the high capacity and low-latency requirements for V2I and V2V links, respectively, we aim to maximize the weighted sum of the capacities and latency requirement. By decomposing the original problem into a classification subproblem and a regression sub-problem, a convolutional neural network (CNN) based approach is developed to obtain real-time decisions on spectrum reuse and power allocation. Numerical results further demonstrate that the proposed CNN can achieve similar performance as the Exhaustive method, while needs only 3.62% of its CPU runtime.

Citations (16)

Summary

We haven't generated a summary for this paper yet.