Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provably Correct Learning Algorithms in the Presence of Time-Varying Features Using a Variational Perspective (1903.04666v3)

Published 12 Mar 2019 in math.OC, cs.LG, and cs.SY

Abstract: Features in machine learning problems are often time-varying and may be related to outputs in an algebraic or dynamical manner. The dynamic nature of these machine learning problems renders current higher order accelerated gradient descent methods unstable or weakens their convergence guarantees. Inspired by methods employed in adaptive control, this paper proposes new algorithms for the case when time-varying features are present, and demonstrates provable performance guarantees. In particular, we develop a unified variational perspective within a continuous time algorithm. This variational perspective includes higher order learning concepts and normalization, both of which stem from adaptive control, and allows stability to be established for dynamical machine learning problems where time-varying features are present. These higher order algorithms are also examined for provably correct learning in adaptive control and identification. Simulations are provided to verify the theoretical results.

Citations (3)

Summary

We haven't generated a summary for this paper yet.