Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auto-Vectorizing TensorFlow Graphs: Jacobians, Auto-Batching And Beyond (1903.04243v1)

Published 8 Mar 2019 in cs.DC, cs.LG, and cs.MS

Abstract: We propose a static loop vectorization optimization on top of high level dataflow IR used by frameworks like TensorFlow. A new statically vectorized parallel-for abstraction is provided on top of TensorFlow, and used for applications ranging from auto-batching and per-example gradients, to jacobian computation, optimized map functions and input pipeline optimization. We report huge speedups compared to both loop based implementations, as well as run-time batching adopted by the DyNet framework.

Citations (8)

Summary

We haven't generated a summary for this paper yet.