Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Based Prediction and Classification of Computational Jobs in Cloud Computing Centers (1903.03759v1)

Published 9 Mar 2019 in cs.LG, cs.IT, cs.NE, math.IT, and stat.ML

Abstract: With the rapid growth of the data volume and the fast increasing of the computational model complexity in the scenario of cloud computing, it becomes an important topic that how to handle users' requests by scheduling computational jobs and assigning the resources in data center. In order to have a better perception of the computing jobs and their requests of resources, we analyze its characteristics and focus on the prediction and classification of the computing jobs with some machine learning approaches. Specifically, we apply LSTM neural network to predict the arrival of the jobs and the aggregated requests for computing resources. Then we evaluate it on Google Cluster dataset and it shows that the accuracy has been improved compared to the current existing methods. Additionally, to have a better understanding of the computing jobs, we use an unsupervised hierarchical clustering algorithm, BIRCH, to make classification and get some interpretability of our results in the computing centers.

Citations (5)

Summary

We haven't generated a summary for this paper yet.