Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On occupation times in the red of Lévy risk models (1903.03721v2)

Published 9 Mar 2019 in q-fin.RM and math.PR

Abstract: In this paper, we obtain analytical expression for the distribution of the occupation time in the red (below level $0$) up to an (independent) exponential horizon for spectrally negative L\'{e}vy risk processes and refracted spectrally negative L\'{e}vy risk processes. This result improves the existing literature in which only the Laplace transforms are known. Due to the close connection between occupation time and many other quantities, we provide a few applications of our results including future drawdown, inverse occupation time, Parisian ruin with exponential delay, and the last time at running maximum. By a further Laplace inversion to our results, we obtain the distribution of the occupation time up to a finite time horizon for refracted Brownian motion risk process and refracted Cram\'{e}r-Lundberg risk model with exponential claims.

Summary

We haven't generated a summary for this paper yet.